1 (a)	$5 \times (-2)^2 - (-2)^3 (= 208)$		2	M1	for correct expression or at least one of 20 or 5×4 or -8 or (+) 8
		28		A1	
(b)		2p(4p-1)	2	B2	B1 for $p(8p-2)$ or $2(4p^2 - p)$ or $2p(4p-1)$ with two terms inside the bracket with one term correct.
(c)		$12t^2 - 8t$	2	B2	B1 for $12t^2$ or $-8t$
(d)	$5x^2 + 20x - 2x - 8$	2	2	M1	for 4 correct terms (ignoring signs) or 3 correct terms with correct signs. or $5x^2 + 18x +$ or $ + 18x - 8$
		$5x^2 + 18x - 8$		A1	
					Total 8 marks

Mark

Notes

Practice Tests Set 17 – Paper 1H mark scheme, performance data and suggested grade boundaries

Working

2	eg $(x \pm 20)(x \pm 1)$	$\frac{-(-21)\pm\sqrt{(-21)^2-4\times1\times20}}{2\times1}$ or $\left(x-\frac{21}{2}\right)^2 - \left(\frac{21}{2}\right)^2 + 20 = 0$		3	M1	If factorising, allow brackets which expanded give 2 out of 3 terms correct – if using formula or completing the square allow one sign error and some simplification – allow as far as eg $\frac{21 \pm \sqrt{441-80}}{2} \text{ or } \text{ eg } \left(x - \frac{21}{2}\right)^2 - \frac{361}{4} = 0 \text{ oe}$
	(x-20)(x-1)	eg $\frac{21 \pm \sqrt{441 - 80}}{2}$ or $\frac{21 \pm \sqrt{361}}{2}$ or $\frac{21 \pm 19}{2}$ or $x = \pm \sqrt{\frac{361}{4}} + \frac{21}{2}$ oe			M1	dep on M1 for correct factorisation, or a correct expression for <i>x</i> if completing the square. or a correct substitution into quadratic formula with some processing.
			1, 20		A1	for both correct values, dep on 1st M1 with no incorrect working.
						Total 3 marks

Mark

Notes

Practice Tests Set 17 – Paper 1H mark scheme, performance data and suggested grade boundaries

Working

3	eg. $10x + 35y = 85$		4	M1	for correct method to eliminate one
	10x + 6y = -2				variable – multiplying one or both
	with the operation of subtraction				equations so the coefficient of x or y
	or $29y = 87$				is the same in both, with the correct
	(+ 21 - 51				operation to eliminate one variable
	0r 6x + 21y = 51				(condone one arithmetic error)
	55x + 21y = -7 with the operation of subtraction				and substituting into the other
	with the operation of subtraction $r_{29r} = -58$				(condone one arithmetic error)
	01 27A 30				(condone one artimetic erfor).
	or eg $5\left(\frac{17-7y}{2}\right) + 3y = -1$				
	or eg $5x + 3\left(\frac{17 - 2x}{7}\right) = -1$				
				M1	dep 1st M1 Substitute found value
					into one equation or correct method
					to eliminate second unknown.
		x = -2		A1	dep 1st M1
		<i>y</i> = 3		A1	
					Total 4 marks

Mark

Notes

Practice Tests Set 17 – Paper 1H mark scheme, performance data and suggested grade boundaries

Working

4	E.g. $x^2 + 4x - 2x - 8 (= x^2 + 2x - 8)$		3	M1	for multiplying out two brackets correctly with no more than one error
	or $x^2 - 2x + x - 2 (= x^2 - x - 2)$				
	or				
	$x^2 + 4x + x + 4 (= x^2 + 5x + 4)$				
	E.g. x3 + 2x2 - 8x + x2 + 2x - 8 or x3 + 4x2 - 2x2 - 8x + x2 + 4x - 2x - 8			M1	for at least 3 terms correct out of a maximum of 6 terms
					or
	or x3 - x2 - 2x + 4x2 - 4x - 8 or x3 - 2x2 + x2 - 2x + 4x2 - 8x + 4x - 8				for at least 4 terms correct out of a maximum of 8 terms
	or				
	$ \begin{array}{r} x3 + 5x2 + 4x - 2x2 - 10x - 8 \text{ or} \\ x3 + 4x2 + x2 + 4x - 2x2 - 8x - 2x - 8 \end{array} $				
		x3 + 3x2 - 6x - 8		A1	
					Total 3 marks

Mark

Notes

Practice Tests Set 17 – Paper 1H mark scheme, performance data and suggested grade boundaries

Working

Q	Working	Answer	Mark	Notes

5 a	$e = \frac{1}{2} + 5z = \frac{c}{2} e e e r$		2	M1	for a correct first step e.g.
	e.g. $A + 32 = -66$ or y				add $5z$ to both sides
	Av = c - 5vz oe				or
					multiply all terms by y
		c = y(A + 5z)		A1	oe
b		1	1	B1	
с	$(x \pm 3)(x \pm 8)$		2	M1	or for $(x \pm a)(x \pm b)$ where $ab = 24$
					or $a + b = -11$
		(x-3)(x-8)		A1	
					Total 5 marks

6 (a)	$81k^{8}$	2	B2	B1 for 81 or k^8 seen in their final
				answer.
(b)	$7m^4n^6$	2	B2	B1 for $7m^4$ or n^6 in a product with
				no other terms in <i>m</i> or <i>n</i>
				Total 4 marks

Practice rests Set 17 – Paper TH mark scheme, performance data and suggested grade boundarie	Practice Tests Set 17	 Paper 1H mark scheme, 	performance data a	nd suggested	grade boundaries
--	-----------------------	---	--------------------	--------------	------------------

Q Working Answer Mark Notes	Q	Working	Answer	Mark	Notes
-----------------------------	---	---------	--------	------	-------

7	E.g. $\frac{3(2x+1)+4(x-2)}{12}$ or $\frac{3(2x+1)}{12} + \frac{4(x-2)}{12}$		3	M1	for expressing both fractions correctly with a common denominator. Allow as two separate fractions.
	$\frac{\text{E.g.}}{\frac{6x+3+4x-8}{12}}$			M1	for removing brackets correctly in a correct single fraction
		$\frac{10x-5}{12}$		A1	accept $\frac{5(2x-1)}{12}$
					Total 3 marks

8	e.g. $\frac{16}{5}$ and $\frac{11}{6}$ or $\frac{96}{30}$ and $\frac{55}{30}$		3	M1	for two correct improper fractions
	e.g. $\frac{16^8}{5} \times \frac{11}{6^3}$ or $\frac{176}{30}$ or $\frac{5280}{900}$ oe			M1	correct cancelling or multiplication of numerators and denominators without cancelling
	e.g. $\frac{16}{5} \times \frac{11}{6} = \frac{176}{30} = \frac{88}{15} = 5\frac{13}{15}$ or $\frac{16}{5} \times \frac{11}{6} = \frac{176}{30} = 5\frac{26}{30} = 5\frac{13}{15}$ or $\frac{16^8}{5} \times \frac{11}{6^3} = \frac{88}{15} = 5\frac{13}{15}$ or $\frac{96}{30} \times \frac{55}{30} = \frac{5280}{900} = \frac{88}{15} = 5\frac{13}{15}$ NB: a student can show initially that $5\frac{13}{15} = \frac{88}{15}$ and they need to show that LHS $=\frac{88}{15}$	shown		A1	Dep on M2 for conclusion to $5\frac{13}{15}$ from correct working – either sight of the result of the multiplication e.g. $\frac{176}{30}$ must be seen and equated to $\frac{88}{15}$ or $5\frac{26}{30}$ or correct cancelling prior to the multiplication to $\frac{88}{15}$ NB: use of decimals scores no marks
					Total 3 marks

Mark

Notes

Practice Tests Set 17 – Paper 1H mark scheme, performance data and suggested grade boundaries

Working

9	$4e^5f^3$	2	B2	(B1 for 2 out of 3 terms correct in a 3 term product)
				Total 2 marks

Q Working Answer Mark Notes	Q	Working	Answer	Mark	Notes
-----------------------------	---	---------	--------	------	-------

10	eg $(2^3)^2 \times \sqrt[3]{(2^2)^6}$ or $(2^3)^2 \times (4)^{\frac{6}{3}}$ or $4^3 \times 4^2$ or 2^6 or 2^4 seen or $2^6 \times 16$ or 64×4^2 or $8^2 \times 4^2$ or $8^2 \times 16$ or 64×16		3	M1	a correct first stage.
	$2^{6} \times (2^{12})^{\frac{1}{3}} \text{or } 1024 \text{or } 32^{2} \text{ or } 4^{5}$ or $2^{6} \times 2^{4}$			M1	dep on 1st M mark.
		2 ¹⁰		A1	dependent on first M1 isw if 2^{10} seen but then 10 given as answer.
					Total 3 marks

11	(a)	vertices at (-9, 6) (-9, 9) (-3, 9) (-6, 6)	Shape in correct position	2	B2	B1 for congruent shape in correct orientation but wrong position or quadrilateral with 2 or 3 vertices correct.
	(b)	vertices at (7, 3) (10, 6) (13, 6) (13, 3)	Shape in correct position	1	B1	
	(c)		enlargement scale factor 2	3	B1 B1	for enlargement, enlarge, etc so long as no mention of rotation, reflection or translation, flip, move etc. SF 2, double, two times etc.
			centre (- 3, 3)		B1	(-3, 3) stated. Accept about, from etc. with no mention of line, or column vector.
						Total 6 marks

Q	Working	A	Inswer	Mark		Notes
12	$\frac{5}{x+2} + \frac{3}{x(x+2)} (=2)$ or $\frac{5x}{x^2+2x} + \frac{3}{x^2+2x} (=2)$		5	M1	Factor or for denon	rising $x^2 + 2x$ in correct expression on LHS writing the two fractions over a common ninator.
	$\frac{5x+3}{x(x+2)} = 2 \text{ or } \frac{5x+3}{x^2+2x} = 2$ or $5x+3 = 2x(x+2)$ oe or $5x+3 = 2x^2+4x$ oe			M1	Corrector or correct	ct simplified single fraction = 2 rect equation with no fractions.
	$2x^2 - x - 3 (= 0)$		-	M1	Correc	ct 3 term quadratic
	(2x-3)(x+1) (=0) or $\frac{1\pm\sqrt{(-1)^2-4\times2\times(-3)}}{2\times2}$ or $\left(x-\frac{1}{4}\right)^2 - \frac{1}{16} - \frac{3}{2} = 0$ oe			M1ft	independent independent independent independent for some some some some some some some some	endent living <i>their</i> 3 term quadratic equation using prect method. orising, allow brackets which expanded c out of 3 terms correct (if using formula or leting the square allow one sign error and simplification – allow as far as eg $\frac{+24}{4}$ or eg $\left(x - \frac{1}{4}\right)^2 = \frac{25}{16}$ oe
		1.5 and -1		A1	oe dep	o on M3
						Total 5 marks

Practice Tests Set 17 – Paper 1H mark scheme, performance data and suggested grade boundaries

The first of the second s	Practice Tests Set 17 -	- Paper 1H mark scheme,	performance data and	suggested grad	de boundaries
--	-------------------------	-------------------------	----------------------	----------------	---------------

Q	Working	Answer	Mark	Notes

13	E.g. $(x-5)^2 - 5^2 (+40)$ or $(x-5)^2 - 25 (+40)$ $(x^2 + 2x^2 + x^2 (+t^2)) = 2x - 10$		2	M1	for a correct first step or for equating coefficients
	(x + 2ax + a (+b)) 2a = -10 or a = -3				
		$(x-5)^2 + 15$		A1	accept $a = -5, b = 15$
					SC B1 for $(-x+5)^2 + 15$ or $(5-x)^2 + 15$
					Total 5 marks

14	$(n^{\frac{4}{5}}) = \frac{1}{16}$ or 0.0625 oe	$\operatorname{eg}\left(n^{-\frac{1}{5}}\right)^{4} = \left(\frac{1}{2}\right)^{4}$		4	M1	for sight of $\frac{1}{16}$ oe, even if raised to an incorrect power. or for algebraic approach, separating out the 4, or 5 or -1 in the power
	$(n=) 16^{\frac{5}{4}} \text{ or } 0.0625^{-\frac{5}{4}} \text{ oe}$ $(n=) 2^{5} \text{ or } \sqrt[4]{1048576} \text{ oe}$ $\text{or } \frac{1}{0.0625^{\frac{5}{4}}} \text{ or } \left(\frac{1}{16}\right)^{-\frac{5}{4}}$	$\operatorname{eg}(n=)\left(\frac{1}{2}\right)^{-5}$	22		M2	for a correct expression for <i>n</i> (M1 for one correct algebraic stage eg $n^{-\frac{1}{5}} = \frac{1}{2}$)
			32		Al	
						Total 7 marks

Working			Answer	r Mark	Notes				
x = 4.57 and 100x = 457.57 or 10x = 45.757 and 1000x = 4575.7 or x = 0.57 and 100x = 57.57 or 10x = 5.757 and 1000x = 575.7		2	M1	M1 for selecting 2 recurring decimals that when subtracted a whole number or terminating decimal eg 453 or 45 eg $100x = 457.57$ and $x = 4.57$ or $1000x = 4575.$ 10x = 45.757 with intention to subtract. (If recurring not shown then allow $10x = 45.757$, $100x = 457.57$, a 1000x = 4575.7 to at least 5sf) or 4 + 0.5757 and eg $x = 0.57$, $100x = 57.57$ with intention to subtract. A1 151 , 19					
E.g. 100x - x = 457.57 4.57 = 453 $\frac{453}{99} = \frac{151}{33} \text{ or } 4\frac{19}{33}$ or 1000x - 10x = 4575.7 45.757 $= 4530 \text{ and } \frac{4530}{990} = \frac{151}{33} \text{ or } 4\frac{19}{33}$ 100x - x = 57.57 0.57 = 57 $\frac{57}{99} \text{ or } \frac{19}{33} \text{ (so)}$ $4.57 = 4\frac{19}{33}$ 1000x - 10x = 575.7 5.757 = 570 $\frac{570}{990} \text{ or } \frac{57}{99} \text{ or } \frac{19}{33} \text{ (so)}$ $4.57 = 4\frac{19}{33}$	Shown		A1	for completion	to $\frac{151}{33}$ or $4\frac{19}{33}$				
					Total 2 marks				
	Working $x = 4.57 and 100x = 457.57 or 10x = 45.757 and 1000x = 4575.7 x = 0.57 and 100x = 57.57 or 10x = 5.757 and 1000x = 575.7 E.g. 100x - x = 457.57 4.57 = 453 \frac{453}{99} = \frac{151}{33} \text{ or } 4\frac{19}{33} 1000x - 10x = 4575.7 45.757= 4530 \text{ and } \frac{950}{990} = \frac{151}{33} \text{ or } 4\frac{19}{33} or100x - x = 57.57 0.57 = 57\frac{57}{99} \text{ or } \frac{19}{33} \text{ (so)} 1000x - 10x = 575.7 5.757 =570 and \frac{570}{990} \text{ or } \frac{57}{99} \text{ or } \frac{19}{33} \text{ (so)} 4.57 = 4\frac{19}{33}$	Workingx = 4.57 and 100x = 457.57 or 10x = 45.757 and 1000x = 4575.7or x = 0.57 and 100x = 57.57 or 10x = 5.757 and 1000x = 575.7E.g. 100x - x = 457.57 4.57 = 453 $\frac{453}{99} = \frac{151}{33}$ or $4\frac{19}{33}$ and $\frac{990}{990} = \frac{151}{33}$ or $4\frac{19}{33}$ or 1000x - 10x = 4575.7 45.757e 4530 and $\frac{990}{990} = \frac{151}{33}$ or $4\frac{19}{33}$ $100x - x = 57.57 0.57 = 57$ $\frac{57}{99}$ or $\frac{19}{33}$ (so) $4.57 = 4\frac{19}{33}$ 1000x - 10x = 575.7 5.757 = 570 and $\frac{570}{990}$ or $\frac{57}{99}$ or $\frac{19}{33}$ (so) $4.57 = 4\frac{19}{33}$	Working $x = 4.57$ and $100x = 457.57$ or 2 $10x = 45.757$ and $1000x =$ 4575.7 4575.7 or $x = 0.57$ and $1000x = 57.57$ $10x = 5.757$ and $1000x = 575.7$ $0100x - x = 457.57 4.57 = 453$ $100x - x = 457.57 4.57 = 453$ Shown $100x - x = 457.57 4.57 = 453$ $4\frac{53}{99} = \frac{151}{33}$ or $4\frac{19}{33}$ $1000x - 10x = 4575.7 45.757$ $4530 = \frac{151}{33}$ or $4\frac{19}{33}$ $000x - x = 57.57 0.57 = 57$ $5\frac{57}{99}$ or $\frac{19}{33}$ (so) $1000x - x = 575.7 5.757 = 5.757 = 57$ $5\frac{570}{990}$ or $\frac{57}{99}$ or $\frac{19}{33}$ (so) $4.57 = 4\frac{19}{33}$ $4.57 = 4\frac{19}{33}$	WorkingAnswer $x = 4.57$ and $100x = 457.57$ or $10x = 45.757$ and $1000x =$ 4575.7 2M1 $0r4575.7or10x = 5.757 and 1000x = 57.57or10x = 5.757 and 1000x = 575.72M1E.g.100x - x = 457.57 4.57 = 453and \frac{453}{99} = \frac{151}{33} or 4.575.7ShownA11000x - 10x = 4575.7 45.757= 4530 and \frac{4530}{990} = \frac{151}{33} or 4\frac{19}{33}1000x - x = 57.57 0.57 = 57\frac{57}{99} or \frac{19}{33} (so)4.57 = 4\frac{19}{33}A1$	WorkingAnswerMark $x = 4.57$ and $100x = 457.57$ or 4575.7 or $x = 0.57$ and $1000x =$ 457.57 or $x = 0.57$ and $100x = 57.57$ or $10x = 5.757$ and $1000x = 575.7$ 2M1for selecting 2 r a whole number eg $100x = 457.57$ $10x = 45.757$ $10x = 45.757$ or $100x = 457.57$ or $100x = 5.757$ and $1000x = 575.7$ 2M1for selecting 2 r a whole number 				

Q Working Answer	Mark	Notes
------------------	------	-------

16	e.g. $\binom{5}{3} - \binom{-2}{4}$ or $\binom{5}{3} + \binom{2}{-4}$		2	M1 or for $\begin{pmatrix} 7 \\ a \end{pmatrix}$ where $a \neq -1$ or $\begin{pmatrix} b \\ -1 \end{pmatrix}$ where $b \neq 7$
		$\begin{pmatrix} 7\\ -1 \end{pmatrix}$		A1
				Total 2 marks

17	$y \ge 1 \text{ oe}$ $x \le 3 \text{ oe}$ $y \le 3x - 2 \text{ oe}$	3	B1 B1 B1	Allow $1 \le y \le 7$ Allow $1 \le x \le 3$ Condone < and > in place of \le and \ge throughout.
				SC B1 if no marks awarded, recognition of lines $x = 3$ and $y = 1$. Allow incorrect inequality and condone use of equals signs eg $y < 1, x = 3$ may be seen on diagram.
				Total 3 marks

	Q	Working	Answer	Mark	Notes
--	---	---------	--------	------	-------

18 a	$2^{6} \times 3 \times 11^{4}$	2	B2	oe, accept 2 811 072
			B1	for $2^a \times 3^b \times 11^c$ or where two of <i>a</i> , <i>b</i> and <i>c</i> are correct
b	$2^9 \times 3^5 \times 11^8$	2	B2	cao
			B1	for $2^a \times 3^b \times 11^c$ or where two of <i>a</i> , <i>b</i> and <i>c</i> are correct or 2.666×10 ¹³ or an equivalent expression for e.g. $2^2 \times 2^7 \times 3^5 \times 11^3 \times 11^5$
				Total 4 marks

19 $y(6y+5)-2y^2=6$ $x\left(\frac{x-5}{6}\right)-2\left(\frac{x-5}{6}\right)^2=6$ 5M1for substitution of linear equation into quadratic or multiplying linear equation by y e.g. $xy-6y^2=5y$ and intention to subtract the two equationsE.g. $4y^2+5y=6$ E.g. $4x^2-10x-266$ (=0) oeA1(dep on M1) writing the correct quadratic expression in form ax^2+bx+c (=0) $4y^2+5y=6$ $4x^2-10x-266$ A1(dep on M1) or a complete method to solve their 3-term quadratic equation (allow one signerror and some simplification - allow as far as $-\frac{5\pm\sqrt{25}+4x+6}{2}$ $(y-)$ $\frac{-5\pm\sqrt{5^2-4\times4\times-6}}{2\times4}$ $(x=)$ $\frac{5\pm\sqrt{(-5)^2-4\times2\times(-133)}}{2\times2}$ M1Dep on first M1 for having two correct x values or two correct x values or two evert x values or two correct y values or the part y							
E.g. $4y^2 + 5y - 6 (= 0)$ oeE.g. $4x^2 - 10x - 266 (= 0)$ oeA1(dep on M1) writing the correct quadratic expression in form $ax^2 + bx + c (= 0)$ $4y^2 + 5y = 6$ $4x^2 - 10x = 266$ allow $ax^2 + bx = c$ E.g. $(4y - 3)(y + 2) (= 0)$ E.g. $(2x - 19)(x + 7) (= 0)$ M1(dep on M1) for a complete method to solve their 3-term quadratic equation (allow one sign error and some simplification - allow as far as $-5 \pm \sqrt{5^2 - 4 \times 4 \times -6}$ $(y =) \frac{-5 \pm \sqrt{5^2 - 4 \times 4 \times -6}}{2x 4}$ $(x =) \frac{5 \pm \sqrt{(-5)^2 - 4 \times 2 \times (-133)}}{2 \times 2}$ M1(dep on M1) for a complete method to solve their 3-term quadratic equation (allow one sign error and some simplification - allow as far as $-5 \pm \sqrt{25 + 96}$ $4\left[\left(y + \frac{5}{8}\right)^2 - \left(\frac{5}{8}\right)^2\right] = 6$ or $4\left[\left(x - \frac{10}{8}\right)^2 - \left(\frac{10}{8}\right)^2\right] = 266$ orA1Dep on first M1 for having two correct x values or two correct y values $(y =) \frac{3}{4}$ and $(y =) -2$ $(x =) \frac{19}{2}$ and $(x =) -7$ A1Dep on first M1 Must be paired and labelled correctly $x = \frac{19}{2}, y = \frac{3}{4}$ $x = -7, y = -2$ A1Dep on first M1 Must be paired and labelled correctly	19	$y(6y+5) - 2y^2 = 6$	$x\left(\frac{x-5}{6}\right) - 2\left(\frac{x-5}{6}\right)^2 = 6$		5	M1	for substitution of linear equation into quadratic or multiplying linear equation by y e.g. $xy - 6y^2 = 5y$ and intention to subtract the two equations
$\frac{4y^{2} + 3y^{2} - 6}{1000} = \frac{4x^{2} - 10x^{2} - 266}{1000} = \frac{1000}{1000} = \frac{1000}{100$		E.g. $4y^2 + 5y - 6 (= 0)$ oe	E.g. $4x^2 - 10x - 266 (= 0)$ oe $4x^2 - 10x - 266 (= 0)$			A1	(dep on M1) writing the correct quadratic expression in form $ax^2 + bx + c (= 0)$
$\frac{1}{(4y-3)(y+2)(=0)} = \frac{1}{(2x-19)(x+7)(=0)}$ $\frac{1}{(y-3)(y+2)(=0)} = \frac{1}{(2x-19)(x+7)(=0)}$ $\frac{1}{(y-3)(y+2)(=0)} = \frac{1}{(2x-19)(x+7)(=0)}$ $\frac{1}{(x-19)(x+7)(=0)} = \frac{1}{(2x-133)(x+7)(=0)}$ $\frac{1}{(x-19)(x+7)(=0)} = \frac{1}{(x-19)(x+7)(=0)}$ $\frac{1}{(x-19)(x+7)(=0)} = \frac{1}{(x-19)(x+7)(x+7)(=0)}$ $\frac{1}{(x-19)(x+7)(x+7)(=0)} = \frac{1}{(x-19)(x+7)(x+7)(x+7)(x+7)(x+7)(x+7)(x+7)(x+7$		$\frac{4y + 3y - 6}{F \alpha}$	4x - 10x - 200			M1	$\frac{1}{(den on M1)}$ for a complete
$ (y =) \frac{-5 \pm \sqrt{5^2 - 4 \times 4 \times -6}}{2 \times 4} $ $ (x =) \frac{5 \pm \sqrt{(-5)^2 - 4 \times 2 \times (-133)}}{2 \times 2} $ $ 4\left[\left(y + \frac{5}{8}\right)^2 - \left(\frac{5}{8}\right)^2\right] = 6 \text{ oe} $ $ 4\left[\left(x - \frac{10}{8}\right)^2 - \left(\frac{10}{8}\right)^2\right] = 266 \text{ oe} $ $ (y =) \frac{3}{4} \text{ and } (y =) -2 $ $ (x =) \frac{19}{2} \text{ and } (x =) -7 $ $ x = \frac{19}{2}, y = \frac{3}{4} $ $ x = -7, y = -2 $ $ A1 \text{ Dep on first M1} \text{ for having two correct } x \text{ values or two correct } y \text{ values} $ $ x = \frac{19}{2}, y = \frac{3}{4} $ $ A1 \text{ Dep on first M1} \text{ Must be paired and labelled correctly} $		(4y-3)(y+2) (= 0)	(2x-19)(x+7) (= 0)			1111	method to solve their 3-term quadratic equation (allow one sign error and some
$4\left[\left(y+\frac{5}{8}\right)^2-\left(\frac{5}{8}\right)^2\right]=6$ oe $4\left[\left(x-\frac{10}{8}\right)^2-\left(\frac{10}{8}\right)^2\right]=266$ oeor $\frac{5\pm\sqrt{25+1064}}{4}$ $(y=)\frac{3}{4}$ and $(y=)-2$ $(x=)\frac{19}{2}$ and $(x=)-7$ A1Dep on first M1 for having two correct x values or two correct y values $x=\frac{19}{2}, y=\frac{3}{4}$ $x=-7, y=-2$ A1Dep on first M1 Must be paired and labelled correctly \Box \Box \Box \Box $Total 5$ marks		$(y=) \frac{-5 \pm \sqrt{5^2 - 4 \times 4 \times -6}}{2 \times 4}$	$(x =) \frac{5 \pm \sqrt{(-5)^2 - 4 \times 2 \times (-133)}}{2 \times 2}$				simplification – allow as far as $\frac{-5 \pm \sqrt{25 + 96}}{8}$
$(y =) \frac{3}{4}$ and $(y =) -2$ $(x =) \frac{19}{2}$ and $(x =) -7$ A1Dep on first M1 for having two correct x values or two correct y values $x = \frac{19}{2}, y = \frac{3}{4}$ A1Dep on first M1 Must be paired and labelled correctly $x = -7, y = -2$ Total 5 marks		$4\left[\left(y+\frac{5}{8}\right)^2-\left(\frac{5}{8}\right)^2\right]=6 \text{ oe}$	$4\left[\left(x - \frac{10}{8}\right)^2 - \left(\frac{10}{8}\right)^2\right] = 266 \text{ oe}$				or $\frac{5 \pm \sqrt{25 + 1064}}{4}$
$x = \frac{19}{2}, y = \frac{3}{4}$ $x = -7, y = -2$ A1 Dep on first M1 Must be paired and labelled correctly Total 5 marks		$(y =) \frac{3}{4}$ and $(y =) -2$	$(x =) \frac{19}{2}$ and $(x =) -7$			A1	Dep on first M1 for having two correct x values or two correct y values
Total 5 marks				$x = \frac{19}{2}, y = \frac{3}{4}$ x = -7, y = -2		A1	Dep on first M1 Must be paired and labelled correctly
							Total 5 marks

Mark

Answer

Notes

Practice Tests S	6et 17 – Paper 1⊦	l mark scheme, per	formance data and	l suggested	grade boundaries
------------------	-------------------	--------------------	-------------------	-------------	------------------

Working

Q	Working	Answer	Mark	Notes
20	$(4^{k+3} =)(2^2)^{k+3}$ oe or $(16 =)2^4$	4	M1	for $(2^2)^{k+3}$ oe or 2^4 or
	$(16=)4^2$ or $(2^k=)(4^{\frac{1}{2}})^k$ oe			4^2 or $\left(4^{\frac{1}{2}}\right)^k$ oe or
	$(4^{k+3} =) \left(16^{\frac{1}{4}}\right)^{k+3}$ oe or $(2^k =) \left(16^{\frac{1}{4}}\right)^k$ oe			$\left(16^{\frac{1}{4}}\right)^{k+3}$ oe or $\left(16^{\frac{1}{4}}\right)^k$ oe
	$(4^{k+3} =)(2^2)^{k+3}$ oe and $(16 =)2^4$		M1	for $(2^2)^{k+3}$ oe and 2^4 or
	$(16=)4^2$ and $(2^k=)(4^{\frac{1}{2}})^k$ oe			4^2 and $\left(4^{\frac{1}{2}}\right)^k$ oe or
	$(4^{k+3} =) \left(16^{\frac{1}{4}}\right)^{k+3}$ oe and $(2^k =) \left(16^{\frac{1}{4}}\right)^k$ oe			$\left(16^{\frac{1}{4}}\right)^{k+3}$ oe and $\left(16^{\frac{1}{4}}\right)^k$ oe
	E.g. $2k + 6 = 4 + k$ or		M1	for a correct linear equation in <i>k</i>
	$k+3 = 2 + \frac{1}{2}k$ or			
	$\frac{1}{2}(k+3) = 1 + \frac{1}{4}k$			
		-2	A1	dep on at least M2
				Total 9 marks

Practice Tests Set	17 – Paper 1H mark schem	e, performance data a	nd suggested c	arade boundaries

Q Working Answer Mark Notes					
	Q	Working	Answer	Mark	Notes

21	$\left(\frac{-1+2}{2},\frac{5+10}{2}\right)$ or (0.5, 7.5) oe		5	M1	
	$\frac{10-5}{2-(-1)} \left(=\frac{5}{3}\right)$ oe			M1	
	$m \times (\frac{5}{3}) = -1$ or $m = -\frac{3}{5}$ or			M1	ft their gradient for use of $m_1 \times m_2 = -1$
	$'7.5' = '-\frac{3}{5}' \times '0.5' + c$ or			M1	ft dep on first M1 and third M1
	c = 7.8 oe or				
	$y - '7.5' = '-\frac{3}{5}'(x - '0.5')$				
		5y + 3x = 39		A1	oe where p , q and r must be integers
					Total 5 marks

				Edexcel a	averages:	scores of	candidates	s who achi	eved grad	e:		
	Mean	Max										
Qn	score	score	Mean %	ALL	9	8	7	6	5	4	3	U
1	7.34	8	92	7.34	7.93	7.71	7.69	7.25	6.42	4.52	2.46	0.72
2	2.49	3	83	2.49	2.91	2.80	2.69	2.07	1.65	0.62	0.18	0.00
3	3.40	4	85	3.40	3.96	3.90	3.53	3.26	2.31	0.92	0.09	0.00
4	2.47	3	82	2.47	2.95	2.84	2.61	2.09	1.47	0.96	0.13	0.00
5	4.02	5	80	4.02	4.86	4.56	4.08	3.45	2.70	1.42	0.61	0.14
6	3.27	4	82	3.27	3.79	3.57	3.25	2.78	2.08	1.62	0.77	0.14
7	2.39	3	80	2.39	2.86	2.57	2.39	1.95	1.68	1.15	0.22	0.00
8	2.27	3	76	2.27	2.63	2.46	2.32	2.16	1.45	1.24	0.87	0.29
9	1.60	2	80	1.60	1.94	1.81	1.52	1.31	0.85	0.58	0.22	0.00
10	2.29	3	76	2.29	2.94	2.68	1.99	1.57	1.08	0.27	0.23	0.29
11	3.98	6	66	3.98	5.30	4.54	3.34	2.83	2.27	1.46	0.60	0.43
12	3.12	5	62	3.12	4.55	3.62	2.60	1.55	1.00	0.15	0.09	0.00
13	1.30	2	65	1.30	1.90	1.57	0.99	0.67	0.20	0.13	0.00	0.00
14	2.51	4	63	2.51	3.75	2.66	1.93	1.45	0.74	0.31	0.18	0.14
15	1.16	2	58	1.16	1.65	1.32	0.93	0.50	0.35	0.07	0.00	0.00
16	1.20	2	60	1.20	1.86	1.28	0.91	0.57	0.32	0.11	0.04	0.00
17	1.82	3	61	1.82	2.68	2.14	1.36	0.64	0.39	0.13	0.05	0.00
18	2.35	4	59	2.35	3.39	2.39	1.79	1.33	0.78	0.51	0.00	0.00
19	2.94	5	59	2.94	4.56	3.49	2.06	1.15	0.61	0.15	0.00	0.29
20	2.33	4	58	2.33	3.79	2.56	1.20	0.96	0.22	0.11	0.00	0.00
21	2.20	5	44	2.20	3.97	2.19	0.84	0.57	0.22	0.29	0.22	0.00
	56.45	80	71	56.45	74.17	62.66	50.02	40.11	28.79	16.72	6.96	2.44

Q	Working	Answer	Mark	Notes

Suggested grade boundaries

Grade	9	8	7	6	5	4	3
Mark	68	56	45	34	23	12	5