Qn	Working	Answer		Mark	Notes
1		6 squares shaded	1	1	B 1
1		0 squares shadee	1	1	Total 1 mark
2 c		7d-3e	2	B2 (B1 for $7d$ or $-3e$ or $7d + -3e$)
					Total 2 marks
3 b		3		1	BI
		10			
					Total 1 mark
4 a		a ⁴	1	R1	
- u		<i>u</i>	1	DI	Total 1 mark
			I		

5 b	20bc	1	B1
			Total 1 mark

Practice Tests	Set 17 – Paper	1F mark scheme.	performance data	and suggested	grade boundaries
					J

Qn	Working	Answer	Mark	Notes
----	---------	--------	------	-------

6	(a)		Wednesday	1	B1	
	(b)	4 : 2.5 or 16 : 10 oe		2	M1	
			8:5		A1	M1 A0 for 5 : 8
	(c)		3.5 "envelopes"	1	B1	Accept
						for half an envelope
	(d)	6		2	M1	
		$\overline{14}$				
			3		A1	
			7			
	(e)	eg Heights of bars (cms): 7, 5.5, 3 or		2	B2	B2 for all bars at correct heights with a
		heights of 3.5, 2.75, 1.5 cms	bars at correct heights			correct scale (at least one value, not
			and correct scale			contradicted. 0 implied)
						If not B2 then B1 for 1 error on heights
						or no scale, but with heights in correct
						proportion eg 7, 5.5, 3 cms
						Total 8 marks

Practice	Tests Set 1	17 – Papei	r 1F mark scheme,	performance data	and suggested	arade boundaries

On Working Answer Mark Notes					
VII WOLKING Allswei Mark Notes	Qn	Working	Answer	Mark	Notes

7	$\frac{4}{15} \times 1200 \ (= 320)$ or for $\frac{3}{15}$ or $\frac{8}{15}$ seen		4	M1
	$1200 - "320" (= 880) \text{ and } "880" \div 11 (= 80)$ or $\frac{3}{11} \times 880 (= 240) \text{ oe}$ or $\frac{3}{15} \times 1200 (= 240) \text{ oe}$			M1
	1200 - (``320'' + ``240'') or 880 - 240 (= 640) or $\frac{8}{11} \times 880 (= 640)$ or $\frac{8}{15} \times 1200$ oe			M1
		320, 240, 640		A1 Must be on correct answer lines or clearly attributed to cake <i>A</i> , <i>B</i> and <i>C</i> , otherwise withhold final A mark.
				Total 4 marks

Qn	Working	Answer	Mark	Notes

8 ai	likely	1	B1
aii	impossible	1	B1
b	cross at $\frac{1}{2}$	1	B1
c	cross at $\frac{1}{6}$	1	B1
			Total 4 marks

9 a	(-2, 3)	1	B1	
b	(×) at (4, −2)	1	B1	condone missing label as long as unambiguous
с	y = -3	1	B1	oe
				Total 3 marks

10 a		Fully correct	3	B3	fully correct Venn diagram
		Venn diagram			
	$A = 2 \qquad A = 3 \qquad B$			(B2	for 2 or 3 sections correct
	$\begin{pmatrix} 4 \\ 6 \end{pmatrix} 9$			B 1	for 1 section correct)
	$\begin{pmatrix} 8 \\ 10 \end{pmatrix}$			DI	for a section concert
b				M1	ft from (a)
					'4' where $a \ge 4$ or $\frac{b}{a}$ where $b \le 12$
					$\frac{a}{a}$ where $a \ge 4$ or $\frac{12}{12}$ where $b \le 12$
		_4	2	A1	oe
		12			
					Total 5 marks

Answer

Mark

Notes

Practice Tests Set 17 – Paper 1F mark scheme, performance data and suggested grade boundaries

Working

Qn

11	$2x - 3 = 20 \div 5$ or $10x - 15 = 20$		3	M1
	2x = "4" + 3 oe or $10x = 20 + "15"$			M1 For collecting terms, ft their
	10x = 35 oe			expansion
		3.5 oe		A1 dep M1
				7 35
				accept $\overline{2}$ or $\overline{10}$
				Total 3 marks

Qn	Working	Answer	Mark	Notes
12 (a)	46 or -6 - 4 or -10		2	M1 Identifying 4 and -6 only.
				or for stating $10 \text{ or} - 10$
		10		A1
(b)	-6, -5, -1, 3, 4		2	M1 Putting temperatures in ascending
	or $4, 3, -1, -5, -6$			or descending order.
		- 1		A1
(c)	3 × 100 22		2	M1 3 cr 0 6 cr
	$\frac{-100}{5}$ S			$\frac{1}{5}$ accept $\frac{1}{5}$ or 0.6 de
		60		A1
(d)	-6+8		2	M1
		2		A1 Accept +2
				Total 8 marks

13 a	Trapezium	1	B1		
b	42	1	B1	Accept 40 – 44	
с	Correct lines marked	1	B1		
d	2	1	B1		
					Total 4 marks

0	XX7 1 •			
Qn	Working	Answer	Mark	Notes

14 (a)	12 348	1	B1
	84 312	1	B1
(b)			
(c)	1,3	2	B2 for both correct values
			-1 eeoo
(d)	2,3	2	B2 for both correct values
			-1 eeoo
			Total 6 marks

15 (a) (i)	Sphere	1	B1
(a) (ii)	Cone	1	B1
(a) (iii)	Prism	1	B1 Accept hexagon prism or hexagonal prism
(b) (i)	8	1	B1
(ii)	12	1	B1
			Total 5 marks

Qn	Working	Answer	Mark	Notes
----	---------	--------	------	-------

16	а		15a + 20	1	B1	
	b		2(2c-7)	1	B1	
	С	E.g. 5x - x = 6 + 11 or 4x - 11 = 6 or 5x = x + 17			M1	for correct rearrangement with <i>x</i> terms on one side and numbers on the other or
						numbers on one side in a correct equation
		4x = 17 or $-4x = -17$			M1	
			4.25	3	A1	oe, dep on at least M1
						Total 5 marks

17 (a) (i)	kilometres	1	B1	Accept km or kms
(ii)	litres	1	B1	
(iii)	square cm	1	B1	Accept sq cm, square centimetres,
				cm^2 etc.
(b)	$1.8 \rightarrow 2.2$	2	B2	B2 for $1800 \rightarrow 2200 \text{ mm}$
	metres			or $180 \rightarrow 220 \text{ cm}$
				or $1.8 \rightarrow 2.2 \text{ m}$
				If not B2, then B1 for
				metres, centimetres or millimetres
				Total 5 marks

Qn	Working	Ar	nswer		Mark	Notes
18	(-2, 7) (-1, 5) (0, 3) (1, 1) (2, -1) (3, -3)	Correct line between $x = -2$ and $x = 3$	3	B3 for a c (B2 fo (-2, 7)) or for all not joi (B1 fo plottec (0, 3) o	orrect line between r a correct straig) $(-1, 5) (0, 3) (1)$ of $(-2, 7) (-1, 5)$ ned) r at least 2 correct or for a line drate or for a line with	the en $x = -2$ and $x = 3$ (ht line segment through at least 3 of (1, 1) (2, -1) (3, -3) (2, -1) (3, -3) (3, -3) plotted but (3, -3) plotted but (4, -1) (2, -1) (3, -3) plotted but (5, -3)
						Total 3 marks

19	(a)	$81k^{8}$	2	B2	B1 for 81 or k^8 seen in their final
					answer.
	(b)	$7m^4n^6$	2	B2	B1 for $7m^4$ or n^6 in a product with
					no other terms in <i>m</i> or <i>n</i>
					Total 4 marks

Qn	Working	Answer	Mark	Notes
20	e.g. $\frac{16}{5}$ and $\frac{11}{6}$ or $\frac{96}{30}$ and $\frac{55}{30}$	3	M1 for two co	orrect improper fractions
	e.g. $\frac{16^8}{5} \times \frac{11}{6^3}$ or $\frac{176}{30}$ or $\frac{5280}{900}$ oe		M1 correct ca numerato	ancelling or multiplication of ors and denominators without cancelling
	e.g. $\frac{16}{5} \times \frac{11}{6} = \frac{176}{30} = \frac{88}{15} = 5\frac{13}{15}$ or $\frac{16}{5} \times \frac{11}{6} = \frac{176}{30} = 5\frac{26}{30} = 5\frac{13}{15}$ or $\frac{16^8}{5} \times \frac{11}{6^3} = \frac{88}{15} = 5\frac{13}{15}$ or $\frac{96}{30} \times \frac{55}{30} = \frac{5280}{900} = \frac{88}{15} = 5\frac{13}{15}$ NB: a student can show initially that $5\frac{13}{15} = \frac{88}{15}$ and they need to show that LF $=\frac{88}{15}$	IS	A1 Dep on N working multiplic equated t or correct ca NB: use c	A2 for conclusion to $5\frac{13}{15}$ from correct – either sight of the result of the ation e.g. $\frac{176}{30}$ must be seen and to $\frac{88}{15}$ or $5\frac{26}{30}$ ncelling prior to the multiplication to $\frac{88}{15}$ of decimals scores no marks
				Total 3 marks

21	(c)	$54 \div (9 \times 2)$		2	M1
			3		A1
					Total 2 marks

On	Working	Answer	Mark	Notes
<u> </u>	8			

22 a	e.g. $A + 5z = \frac{c}{y}$ oe or Ay = c - 5yz oe		2	M1	for a correct first step e.g. add 5z to both sides or multiply all terms by y
		c = y(A + 5z)		A1	oe
					Total 2 marks

Practice Tests Set 17 -	 Paper 1F mark scheme. 	performance data and	suggested (arade boundaries

Qn	Working	Answer	Mark	Notes
----	---------	--------	------	-------

				Edexcel averages: scores of candidates who achieved grade:						
	Mean	Max								
Qn	score	score	Mean %	ALL	5	4	3	2	1	U
1	0.90	1	90	0.90	0.99	0.92	0.94	0.64	0.17	0.50
3	0.86	1	86	0.86	0.98	0.87	0.75	0.59	0.42	0.50
2	1.65	2	83	1.65	1.92	1.74	1.28	0.95	0.58	1.50
4	0.79	1	79	0.79	0.81	0.85	0.81	0.55	0.83	0.50
5	0.88	1	88	0.88	0.97	0.79	0.84	0.82	0.50	0.50
6	6.64	8	83	6.64	7.17	6.72	6.06	5.79	3.93	3.00
7	2.95	4	74	2.95	3.84	3.13	2.03	0.26	0.08	0.00
8	3.18	4	80	3.18	3.60	3.09	2.70	2.45	1.83	2.00
9	2.39	3	80	2.39	2.70	2.12	2.01	1.91	1.75	1.00
10	3.67	5	73	3.67	4.40	3.52	3.25	1.54	1.34	1.50
11	2.30	3	77	2.30	2.77	2.11	2.23	1.22	0.08	0.00
12	5.81	8	73	5.81	6.97	5.53	4.48	3.70	1.50	0.00
13	2.83	4	71	2.83	3.23	2.66	2.59	1.96	1.33	1.00
14	4.24	6	71	4.24	4.76	3.85	3.65	3.30	3.00	1.00
15	3.16	5	63	3.16	3.59	3.00	2.72	2.34	1.91	0.00
16	3.53	5	71	3.53	4.58	2.97	2.50	1.59	0.25	0.50
17	3.25	5	65	3.25	3.71	2.94	2.71	2.57	1.84	1.00
18	1.88	3	63	1.88	2.60	1.51	0.94	0.59	0.00	0.00
19	2.03	4	51	2.03	2.74	1.63	1.13	0.74	0.25	1.00
20	1.46	3	49	1.46	2.02	1.18	0.50	0.59	0.25	0.50
21	1.09	2	55	1.09	1.56	0.76	0.58	0.17	0.00	0.00
22	0.52	2	26	0.52	0.85	0.18	0.16	0.00	0.00	0.00
	56.01	80	70	56.01	66.76	52.07	44.86	34.27	21.84	16.00

Qn Working Answer Mark Notes	Qn	Working	Answer	Mark	Notes
------------------------------	----	---------	--------	------	-------

Suggested grade boundaries

Grade	5	4	3	2	1
Mark	59	48	39	28	19